

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Tommy G. Thompson, Governor George E. Meyer, Secretary Ruthe E. Badger, Regional Director Horicon Service Center N7725 STH 28 Horicon, Wisconsin 53032 Telephone 920-387-7860 FAX 920-387-7888

June 5, 2000

Tom Reinsch Condon Companies P.O. Box 184 Ripon, WI 54971

Subject:

Closure of Kloostra Fueling Facility, CTH B, Cambria

BRRTS# 02-11-104695 PDF

Dear Mr. Reinsch:

On September 9, 1999, your site was reviewed for closure by the South Central Region Closure Committee. This committee reviews environmental remediation cases for compliance with state laws and standards to maintain consistency in the closure of these cases. On September 10, 1999, you were notified that the Closure Committee had granted conditional closure to this case.

On June 2, 2000, the Department received correspondence indicating that you have complied with the conditions of closure, which were as follows; filing of a groundwater use restriction and abandonment of the monitoring wells. Based on the correspondence and data provided, it appears that your site has been remediated to Department standards in accordance with s. NR 726.05, Wis. Adm. Code. The Department considers this case closed and no further investigation, remediation or other action is required at this time.

However, please be aware that this case may be reopened pursuant to s. NR 726.09, Wis. Adm. Code, if additional information regarding site conditions indicates that contamination on or from the site poses a threat to public health, safety or welfare, or the environment.

The Department appreciates your efforts to restore the environment at this site. If you have any questions regarding this letter, please contact me at the number below.

Mark F. Putra, Hydrogeologist Remediation & Redevelopment

Sincerely.

Telephone: (920) 387-7867 Putram@dnr.state.wi.us

Cc: Tim Welch, Sigma Env., 220 East Ryan Road, Oak Creek, WI 53134-4533

Document Number

GROUNDWATER USE RESTRICTION

Declaration of Restrictions

In Re: Lot 1. Certified Survey Map No. 1206, recorded in Volume 5 of Surveys, page 198, as Document No. 466538, Village of Cambria, Columbia County, Wisconsin.

(Being located in the Southeast Quarter of the Northwest Quarter and Northeast Quarter of the Southwest Quarter, Section 6, Township 12 North, Range 12 East.)

STATE OF WISCONSIN)
)SS
COUNTY OF COLUMBIA)

MAY 2 3 2000

Reg. of Deeds at 8:00AM

Recording Area

Name and Return Address
CONDON OIL CO.
VICKI GACK
PO BOX 184
RIPON WY 54971

Parcel Identification Number (PIN)

WHEREAS, CONDON OIL CO. is the owner of the above-described property.

WHEREAS, one or more petroleum discharges have occurred on this property, and Benzene-contaminated groundwater above ch. NR 140, Wis. Adm. Code, enforcement standards existed on this property on the following date and at the following location: on September 21, 1998, at the location of the former sump, with a concentration of 210 micrograms per liter. The location of the former sump is depicted on Exhibit A which is attached and hereby made a part of this restriction.

WHEREAS, it is the desire and intention of the property owner to impose on the property restrictions which will make it unnecessary to conduct further groundwater or soil remediation activities on the property at the present time.

WHEREAS, natural attenuation has been approved by the Department of Natural Resources to remediate groundwater contamination exceeding ch. NR 140, Wis. Adm. Code, groundwater standards within the boundaries of this property.

WHEREAS, construction of wells where the water quality does not comply with drinking water standards in ch. NR 809 is restricted by chs. NR 811 and NR 812, Wis. Adm. Code. Special well construction standards or water treatment requirements, or both, or well construction prohibitions may apply.

NOW THEREFORE, the owner hereby declares that all of the property described above is held and shall be held, conveyed or encumbered, leased, rented, used, occupied and improved subject to the following limitation and restrictions: Anyone who proposes to construct or reconstruct a well on this property is required to contact the Department of Natural Resources' Bureau of Drinking Water and Groundwater, or it successor agency, to determine what specific requirements are applicable, prior to constructing or reconstructing a well on this property. No well may be constructed on this property unless applicable requirements are met.

If construction is proposed on this property that will require dewatering, or if groundwater is to be otherwise extracted from this property, while this groundwater use restriction is in effect, the groundwater shall be sampled and analyzed for contaminants that were previously detected on the property and any extracted groundwater shall be managed in compliance with applicable statutes and rules.

This restriction is hereby declared to be a covenant running with the land and shall be fully binding upon all persons acquiring the above-described property whether by descent, devise, purchase or otherwise. This restriction benefits and is enforceable by the Wisconsin Department of Natural Resources, its successors or assigns. The Department, its successors or assigns, may initiate proceedings at law or in equity against any person or persons who violate or are proposing to violate this covenant, to prevent the proposed violation or to recover damages for such violation.

Any person who is or becomes owner of the property described above may request that the Wisconsin Department of Natural Resources or its successor issue a determination that one or more of the restrictions set forth in this covenant is no longer required. Upon the receipt of such a request, the Wisconsin Department of Natural Resources shall determine whether or not the restrictions contained herein can be extinguished. If the Department determines that the restrictions can be extinguished, an affidavit, attached to a copy of the Department's written determination, may be recorded to give notice that this deed restriction, or portions of this deed restriction, are no longer binding.

By signing this document, B. Kent Bauman asserts that he is duly authorized to sign this document on behalf of Condon Oil Company.

Restrictions, this	ed this Declaration of, 20_00
Signature: B. KENT BRUNAN	
Subscribed and sworn to before me	
Hery R. Bernier , 2000.	
Notary Public, State of WISCOUS /N My commission 2-8-04	

This document was drafted by the Wisconsin Department of Natural Resources based on comments from Condon Oil Co.

STATE BAR OF WISCONSIN FORM 1 19 WARRANTY DEED

.565079

This Deed, made between GARY KLOOSTRA
a single person,
and CONDON QIL CO.

Granter.

Witnesseth, That the said Granter, for a valuable consideration

conveys to Granter the following described real estate in Columbia

County, State of Wisconsin:

STATE OF WISCONSIN } SS
COLUMBIA COUNTY } SS
RECEIVED FOR RECORD

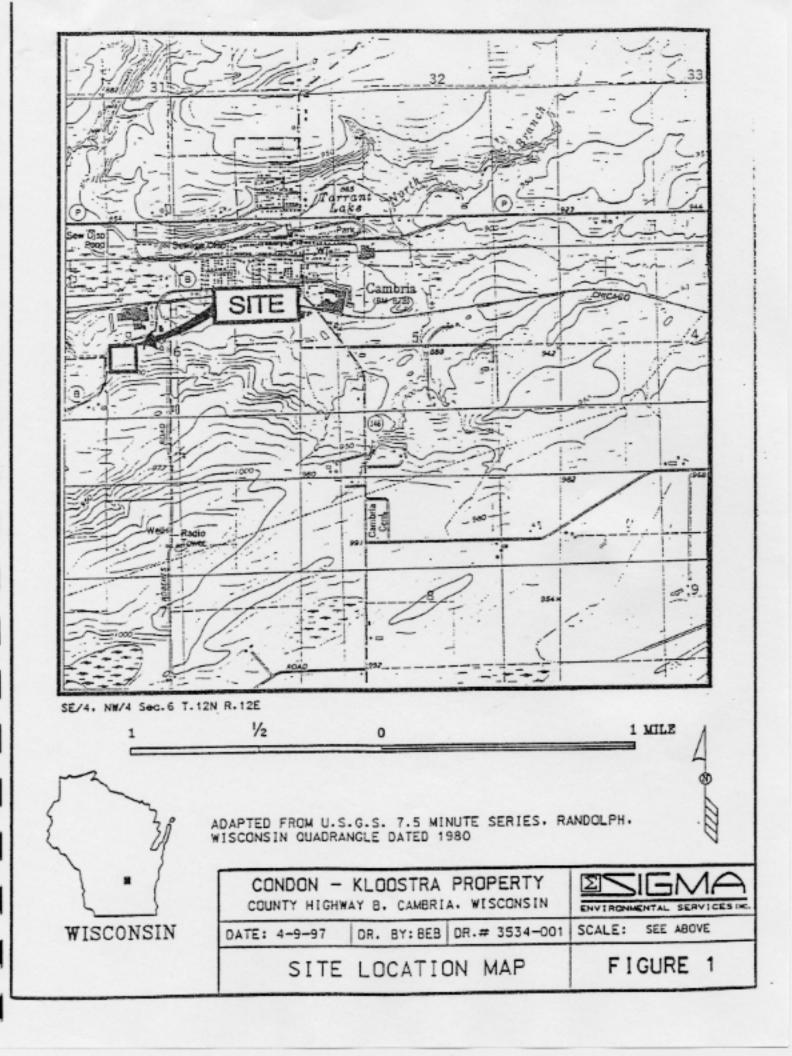
JAN 3 0 1997

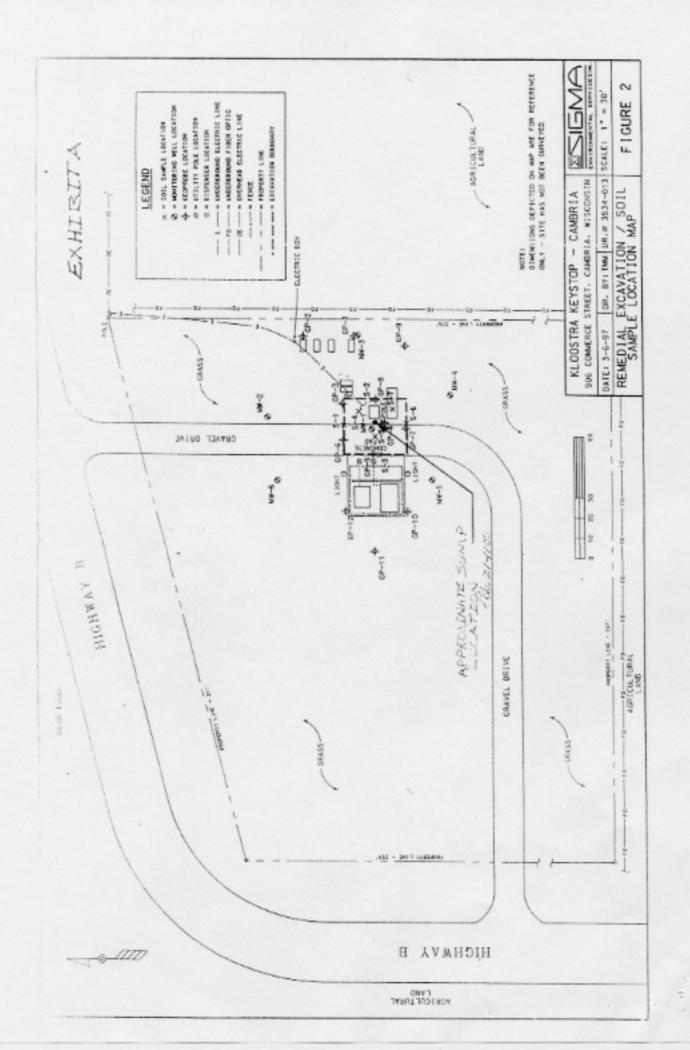
Damy Juse

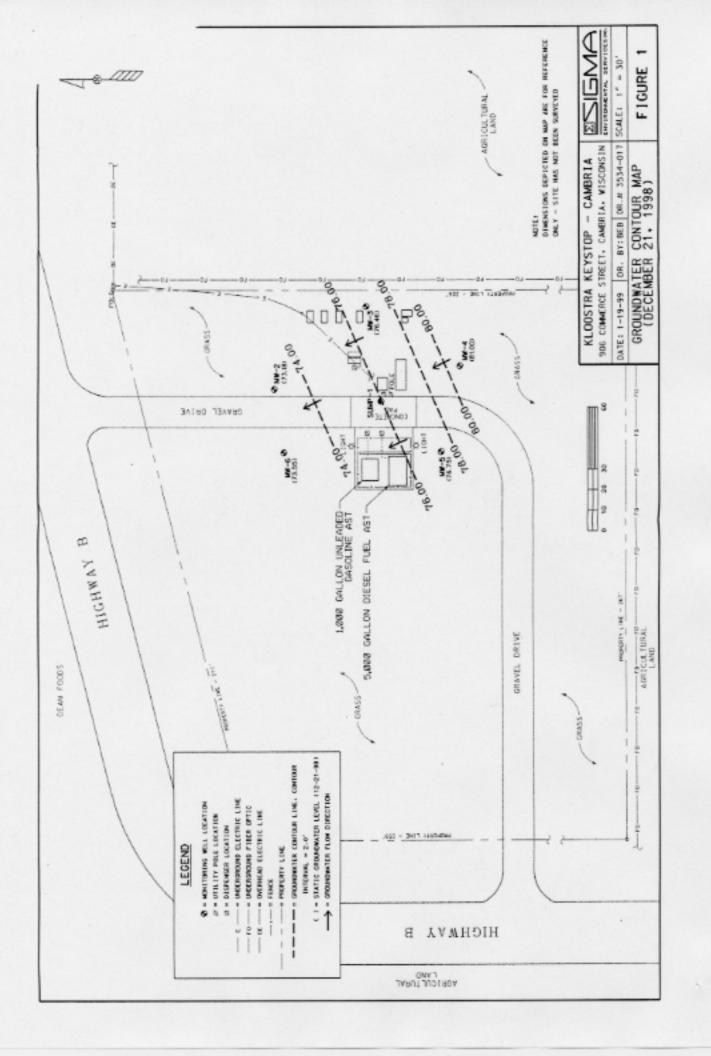
Reg of Dende u 10:45A M

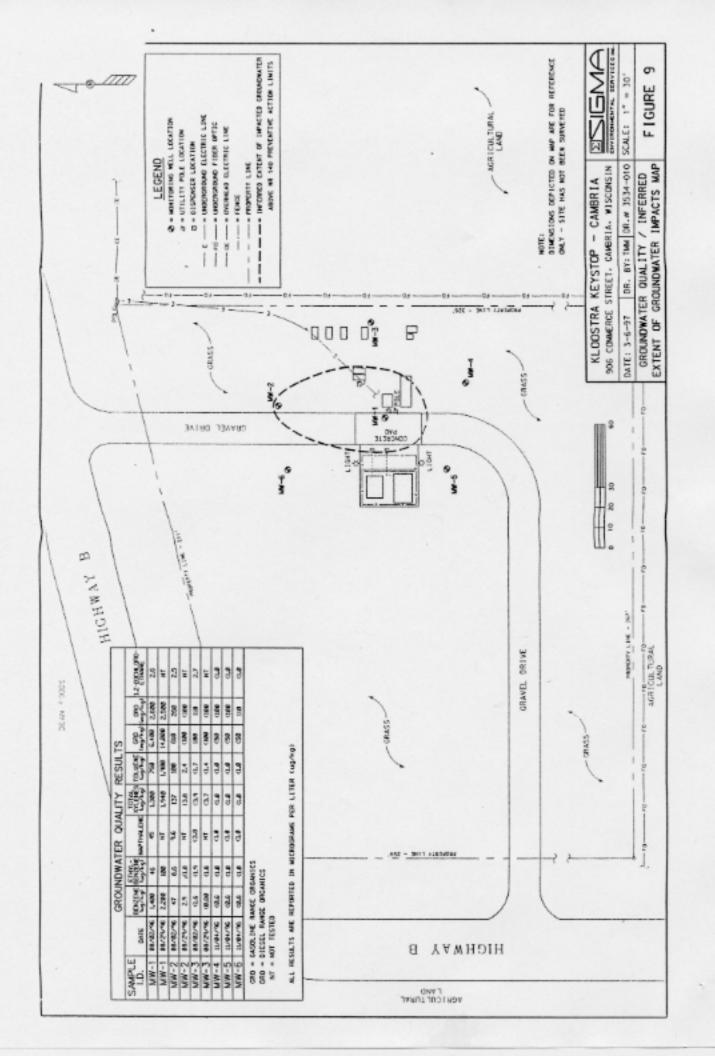
THIS SPACE PERENVED FOR RECONDING DATA

NAME AND RETURN ADDRESS


KENT BAUMAN P.O. Box 164-ROON, WI SHATI


298.B (Parcel Identification Number)


Lot 1. Certified Survey Map No. 1206, recorded in Volume 5 of Surveys, rage 198, as Document No. 466538, Village of Cambria, Columbia County. Wisconsin.


_18.00

(Being located in the Southeast Quarter of the Northwest Quarter and Northeast Quarter of the Southwest Quarter, Section 6, Township 12 North, Range 12 East.)

	200000000000000000000000000000000000000
	100 A
0 to 75.	1000000000
-	
141175	100000000000000000000000000000000000000
- 49	eronoomo
	1000000000
- P	775000000
200	
- 5	
	-
1000 125	-
200	- MC - TC
	2 10
- 70	= : W
	- C - S
· · · · · · · · · · · · · · · · · · ·	-40 -45
000,000	2
	2 8
40.00	2 5
4 3	8 E
: 5	04 E
100	WBTO
OLIA P	EYBTO
OLIA P	CEYBTO
H OULA	COMPO
EH OLLA	COMPO
TEH OUA	D COMPOS A KEYBTO
VIEH OLIGI	ED COMPOS SA KEYBTO
ATER OUR	ED COMPOS RA KEYBTO
VATER OUR	TED COMPOS TRA KEYSTO
WATER OUR	CTED COMPOS STRA KEYSTO
DWATER OUR	CCTED CONPOS DSTRA KEYBTO
DWATER OUR	ECTED COMPOS OSTRA KEYBTO
NDWATER OUR	TECTED COMPOS DOSTRA KEYSTO
INDWATER OUR	ETECTED COMPOS COSTRA KEYSTO
CONDMATER DUA	ETECTED COMPOS LOOSTRA KEYSTO
DUNDWATER OUR	DETECTED CONFOUNDS ONLY)
SOUNDWATER GUA	DEFECTED CONPOUNDS ONLY HLOOSTRA KEYBTOP-CAMBERA
ROUNDWATER OUR	IDETECTED COMPON NLOOSTRA KEYSTO
CROUNDWATER OUR	RECOGNING REVISED
ORDUNDWATER GUA	IDETECTED COMPOS REOOSTRA KEYSTO
L GROUNDWATER GUA	ILECTED COMPON REODSTRA KEYBTO
AL GROUNDWATER OUR	IDETECTED COMPON KLOOSTRA KEYSTO
AL GROUNDWATER OUR	HEOOSTRA KEYBTO
CAL GROUNDWATER OUR	IDSTECTED COMPON
ICAL GROUNDWATER GUA	IDSTRUTED CONPOS REOOSTRA KEYBTO
HICAL GROUNDWATER QUA	IDETECTED COMPOS REOOSTRA KEVBTO
ORICAL GROUNDWATER QUA	IDSTECTED COMPON
ORICAL GROUNDWATER QUA	HLOOSTRA KEYBTO
TORICAL GROUNDWATER QUA	IDSTECTED COMPON
TORICAL GROUNDWATER QUA	IDSTRUTED COMPON
STORICAL GROUNDWATER QUA	IDETECTED COMPON
ISTORICAL GROUNDWATER QUA	IDSTRUTED COMPON
HISTORICAL CROUNDWATER GUALITY LABORATORY RESULTS	IDSTECTED COMPON
HISTORICAL CROUNDWATER DUA	IDSTRUTED COMPON
HISTORICAL GROUNDWATER QUA	IDETECTED COMPON

906 COMMERCE STREET

2/08/97 03/30/98 06/29/98 09/21/58/
- SO
200
<100 NT NT
< 0.16 < 0.13 < 0.13
< 0.20
-
< 0.94 < 0.23 0.25
< 0.20 < 0.16 < 0.16
<0.22
<0.29 <
<0.89
IN
IN
TM
TM
IN
INT
NT
NT NT NT
MT

- Methyl tert butyl other

Gasoline Range Organica
 Diesel Range Organics

= Analyte not tested

 Enforcement Standard
 Preventative Action Limit MTBE GRO DRO NT RS

- No established stondard NES = Exceeds NR 140 ES

Sump S-1 replaced monitoring well MW-1 which was abandoned by complete removal during excevation activities Note: All results are reported in micrograms per liber (ugit)

							TABLE	*									
	•			Ī	HISTOPHICAL GROUNDWATER GUALITY LABORA IGNY HEBOLIS (DERECTED COMPOUNDS ONLY) KLOOSTBA KEYSTOP CAMBINA	DETEC STOOR	DUNDWATER GUALITY LABORA DETECTED COMPOUNDS ONLY STOOSTER KEYSTOP CAMBRIA	POLINDS O	MEYN	MESOT							
						308	CANBRIA MISCONSIN	DE STREE	_								
	-		MW-4	-				MW-5	- Constitution				9-7479		-		Г
Compounds	11/04/96	1104/96 12/08/97	LO	3/30/98 06/29/98 08/21/98	26/21/98	1/04/96	04/96 12/08/97 03/30/98 06/29/98 09/21/98	33/30/98	86/62/90	09/21/98	11/04/96	12/08/97	12/08/97 03/30/98 06/29/98	06/29/98	09/21/98	ES	PAL.
IGRO	05>	× 50	4	×50	NT	8 ×	< 50	<50	< 50	INT	< 50	< 50	< 50	<50	IN	San	NES
DRO	< 100	170	INT	-N	TN	< 100	110	NT	NT	NT	110	< 100	NT	TN	LN.		NES
Benzene	6.0.s	< 0.16	< 0.13	<0.13	< 0.13	40.6	< 0.16	0.13	<0.13	< 0.13	<0.0>	< 0.16	< 0.13	< 0.13	<0.13	\neg	0.5
Tolune	<1.0	< 0.36	< 0.20	<0.20	<0.20	0	< 0.36	<0.20	0.22	< 0.20	<1.0	<0.36	< 0.20	0.23	<0.20	343	68.8
Ethylbenzene	<1.0	< 0.29	< 0.22	< 0.22	< 0.22	0.1.0	< 0.29	< 0.22	< 0.22	< 0.22	< 1.0	< 0.29	<0.22	<0.22	< 0.22	-	140
Total Xylenes	<1.0	< 0.94	< 0.23	< 0.23	< 0.23	0.15	< 0.94	<0.23	0.5	< 0.23	c1.0	< 0.94	<0.23	0.35	< 0.23	620	124
MTBE	<1.0	< 0.20	< 0.16	<0.16	<0.16	<1.0	< 0.20	<0.16	<0.16	< 0.16	<1.0	< 0.20	<0.16	<0.16	< 0.18	8	12
1,2,4-Trimethylbenzene	<1.0	< 0.30	< 0.22	<0.22	< 0.22	0.1.0	< 0.30	<0.22	< 0.22	< 0.22	<1.0	< 0.30	<0.22	< 0.22	< 0.22	480	96
1.3,5-Trimethylbenzene	<1.0	< 0.34	<0.29	<0.29	< 0.29	0.15	< 0.34	<0.29	< 0.29	<0.29	<1.0	< 0.34	<0.29	<0.29	< 0.29	480	96
Soluble Lead	< 2.0	<1.6	<0.89	< 50	NT	< 2.0	<1.6	< 0.89	NT	M	< 2.0	<1.6	<0.69	N	NT	15	1.5
hopropylbenzene	<1.0	IN	N.T.	INT	NT	<1.0	IN	NT	NT	MT	<1.0	M	NT.	NT	NT	NES	NES
n-Propylbenzene	<1.0	IN	IN	NT	MT	<1.0	MT	NT	NT	TM	<1.0	TN	NT	NT	MT	NES	NES
Mapthalene	0.12	TW	TN	NT	NT	c1.0	TN.	TN	NT	NT	<1.0	Į.	LN.	NT	NT	40	8.0
p-lsopropy/toluene	<1.0	M	IN	NT	TM	×1.0	MT	NT	NT	NT	<1.0	TN	LN.	NT	NT	MIS	NES
sec-ButyBenzene	<1.0	LN.	LN.	NT	INT	<1.0	NT	NT	NT	NT	c1.0	LN.	TN	NT	IN	NES	NES
1-Methydnapthalene	< 0.5	NT	NT	NT	MT	< 0.5	N	MT	M	NT	< 0.5	×	NT.	NT	N	SER	NES
2-Methytnapthalene	< 0.5	MT	NT	INT	MT	< 0.5	NT	NT	MT	N	< 0.5	MT	NT	NT	IN	NES	NES
Acenaphthylene	<1.0	NT.	NT	IN	INT	0.15	TN	NT	NT	MT	<1.0	TN	NT	MT	M		NES
1,2-Dichlorosthana	<1.0	NT	NT	NT	MT	<1.0	NT	NT	MT	TN.	0/1>	TN	NT	N	MT	9.0	0.05
Key:	:																
MTBE		Methyl tert butyl ether	of ether														-
DAD	a Diesel	Diesel Pande Organica	ganics														
IN	- Analyt	Analyte not tested	pe														
53	= Enforce	sement Sta	andard														
PAL	- Preven	Mative Ac	Preventative Action Limit														
	- Exces	ds NR 140	530														
NES	- No es	No established standard	prepues														
Note: All results are reported in micrograms per liter (ug/l)	m ul petro	acrograms	per liter 0	light	denne de bereit	- constant	the personal days	dres average	office seeling	- Marie							
Sump 5-1 replaced mondoing well form I which was actricated by compress remove doing encircles remove	opposition pa	Man But	OWN I WHICH	Dan seas	An Deutop	CONTRACTOR	an examine	And Garage	2000	-		-				ı	1